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In a brief glance at an object or shape, we can appreciate a rich suite of its functional properties, including
the organization of the object’s parts, its optimal contact points for grasping, and its center of mass, or
balancing point. However, in the real world and the laboratory, balance perception shows systematic
biases whereby observers may misjudge a shape’s center of mass by a severe margin. Are such biases
simply quirks of physical reasoning? Or might they instead reflect more fundamental principles of object
representation? Here we demonstrate systematically biased center-of-mass estimation for two-
dimensional (2D) shapes (Study 1) and advance a surprising explanation of such biases. We suggest that
the mind implicitly represents ordinary 2D shapes as rich, volumetric, three-dimensional (3D) objects,
and that these “inflated” shape representations intrude on and bias perception of the 2D shape’s geometric
properties. Such “inflation” is a computer-graphics technique for segmenting shapes into parts, and we
show that a model derived from this technique best accounts for the biases in center-of-mass estimation
in Study 1. Further supporting this account, we show that reducing the need for inflated shape
representations diminishes such biases: Center-of-mass estimation improved when cues to shapehood
were attenuated (Study 2) and when shapes’ depths were explicitly depicted using real-life objects
laser-cut from wood (Study 3). We suggest that the technique of shape inflation is actually implemented
in the mind; thus, biases in our impressions of balance reflect a more general functional characteristic of
object perception.

Keywords: visual cognition, balance perception, shape perception, center of mass, inflation

Supplemental materials: http://dx.doi.org/10.1037/xge0000151.supp

Whereas many striking visual phenomena—including nearly all
classical visual illusions—require impoverished viewing condi-
tions, tricks in lighting, carefully crafted stimuli, or accidental
views of precisely arranged scenes, a more familiar and naturalistic
sort of illusion involves the (mis)perception of physical balance. In
certain cases, we may observe one or more objects appearing to
balance in circumstances that seem unlikely or even impossible, as
when a ballet dancer holds a seemingly off-tilt pose, a stage
performer stacks several objects on her head, or an architectural
design gives a building the false appearance of being about to
topple.

Thus, perfectly balanced objects can falsely appear unbalanced.
In addition, in many cases, we may illusorily perceive not only that
an object is unbalanced but also that it seems unbalanced in a
particular way and might therefore appear as though it should fall
over in a particular direction. For example, a popular children’s
toy sometimes known as a “gravity bird” can balance perfectly on
the tip of its beak in apparent defiance of physics, seeming as

though it should fall backward toward its tail (Figure 1a). Like-
wise, pieces of rock-balancing art can involve surprisingly stable
arrangements of stacked heavy objects and yet give the illusion
that the rocks should topple over in a particular direction. For
instance, Figure 1b shows an image of a stable tower of rocks, but
the tower seems unbalanced and likely to fall (perhaps to the right).

(Mis)perceiving Balance: A Puzzle

How and why does our perception of balance go wrong? Here
we explore a curious bias we discovered in the laboratory that
mirrors the sorts of directional biases you may experience in
Figure 1. To preview the initial result, subjects who estimate the
center of mass of a wide variety of two-dimensional (2D) shapes
(by identifying the point on the surface of a shape at which the
shape would be able to balance) give surprisingly inaccurate
estimates, often misjudging the center of mass by a wide margin.
Moreover, subjects’ errors for a given shape are not randomly or
normally distributed; instead, their error from the true center of
mass of a particular shape is consistently biased in a particular
direction, such that even the location converged upon by the
average of many subjects’ estimates is itself often far off-target
(see Figure 2).

Such systematic biases in center-of-mass estimation (which are
empirically demonstrated and characterized in detail in Study 1)
would seem surprising for several reasons. The appreciation of
such physical properties of objects seems crucial to many familiar
activities that we apparently perform successfully (e.g., hanging
picture frames, carefully stacking dishes in a sink, or adding blocks
to towers as children), including actions that would have been
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important in our evolutionary past (e.g., lifting heavy objects,
building simple structures, or rapidly grabbing and using tools;
Iberall, Bingham, & Arbib, 1986) — and so it would be odd for our
judgments of such properties to be so systematically inaccurate. In
addition, the center of mass for shapes such as those in Figure 2 is
simply the centroid of each of the shape’s pixels, and centroid
estimates are accurate in other contexts (e.g., in perceiving the
average location of many dots; Alvarez & Oliva, 2008), which
suggests that the visual system can in principle accurately compute
the center of mass of a 2D shape but for some reason does not do
so. Finally, the existence of a directional bias in center-of-mass
estimates, rather than normally distributed error around the true
center of mass, is unusual: Even if the task is difficult for each
subject, one might expect center-of-mass estimation to exhibit a
“wisdom of the crowds” pattern in which random subject-level
error would converge on the correct response (Galton, 1907).
However, in this case, not only does each subject give inaccurate
center-of-mass judgments, but the crowd is also “unwise.” Thus,
this bias poses a puzzle: What is the nature of our poor perception
of balance, and why does this bias arise?

Shape “Inflation”: A Solution

Here we advance a surprising solution to the puzzle of direc-
tional biases in center-of-mass estimation. We suggest that these
biases are not simply quirks of physical reasoning but that they
instead reflect more general principles of object representation and
perceptual organization. In particular, we suggest that such biases
arise in the course of the visual segmentation of shapes into parts;
for example, as when we perceive that a human hand is not a single
unitary object but is rather composed of five distinct fingers and a
palm (De Winter & Wagemans, 2006; Hoffman & Singh, 1997).
Identifying the parts of a 2D shape is a fundamental and yet
notoriously difficult computational process—indeed, much more
difficult than identifying the parts of a three-dimensional (3D)
shape (Hoffman & Richards, 1984). For this reason, a prominent
approach to 2D part segmentation in computer vision models is to

“inflate” 2D shapes into a 3D form so as to apply more tradition-
ally successful 3D segmentation rules (e.g., the 3D Minima rule;
Hoffman & Richards, 1984) and then to project the part boundaries
output by these 3D-specific rules back onto the 2D shape (Twarog,
Tappen, & Adelson, 2012).

Thus, an intriguing possibility is that human vision too implic-
itly represents 2D figures in an “inflated” 3D form—even when no
depth information is explicitly present in the image—and that this
3D representation plays a role in 2D shape representation, intrud-
ing on perception of the shape’s 2D properties (such as its center
of mass) and biasing them toward that property’s value for the 3D
object. Such an account would suggest that biased estimation of
the 2D center of mass actually reflects a more general functional
characteristic of object processing, and it would also constitute the
first psychophysical evidence that shape inflation is not merely an
effective technique in computer vision systems but is actually
implemented in the mind.

The Current Studies

In the present experiments, we first establish these systematic
biases in center-of-mass estimation and compare the “inflation”
hypothesis against other possible accounts (Study 1). Then, we
directly test the inflation hypothesis by “disrupting” the hypothe-
sized inflation process in two highly divergent ways. First, we
degrade the shapes by presenting them as 2D arrays of dots,
predicting that such degradation will (rather counterintuitively)
improve center-of-mass estimation by reducing the impetus for
such inflation in the first place (Study 2). Then, we enhance the
shapes by presenting them as real-life, uniformly thick 3D objects
(custom-constructed out of wood using a laser cutter), predicting
that this will also improve center-of-mass estimation by reducing
the need to rely on an inferred 3D representation of the 2D shape
because such 3D information is already provided explicitly by the
object itself (Study 3). Collectively, these studies test the possi-
bility that the visual system builds rich, volumetric 3D models of

Figure 1. Examples of real-world illusions of balance. (a) A toy sometimes known as a “gravity bird” balances
on its beak in apparent defiance of physics. (b) Stable arrangements of rocks can falsely look as though they
should topple over. See the online article for the color version of this figure.
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simple 2D shapes and that these inflated 3D representations drive
basic judgments about objects in the world.

Study 1: Inflationary Intrusion on
Center-of-Mass Estimation

To establish and quantify systematic biases in center-of-mass
estimation, we displayed asymmetric 2D shapes to subjects and
instructed the subjects simply to indicate where on each shape’s
surface it could stably balance. We then compared these biases to
a simple inflation-based model and directly tested it against other
interpretations of such biases.

Method

Subjects. One hundred subjects were recruited online from
Amazon Mechanical-Turk and were monetarily reimbursed1 (for
discussion of this subject pool’s reliability, see Crump, McDon-
nell, & Gureckis, 2013).

Stimuli. Thirty shapes served as experimental stimuli (see
Figure 2). Each shape met the following criteria: (a) the shape was
asymmetrical about a major axis; (b) the true center of mass was
located within the shape’s bounding contour; and (c) the shape had
a salient “part structure,” such that certain regions of the shape
were relatively long and thin whereas others were relatively short
and stout. The shapes ranged from 362 to 637 pixels in width and
255 to 655 pixels in height (although their physical size was of
course determined by the settings of each subject’s display). All
shapes appeared as black outlines with gray fills on a white
background. (To ensure that subjects understood the task, we also
included three “catch” shapes whose centers of mass we predicted
would be easily and accurately estimated: an equilateral triangle,
an ellipse, and a symmetrical “dumbbell” shape.)

Procedure. An instruction page informed subjects that they
would see several shapes on subsequent pages and that they should
“find (and then click) the ‘center of gravity’ of each shape. In other
words, you should click the point on the surface of the shape where
someone could balance the shape on their finger.” Subjects were
then shown an example of a correct response for a simple case (a
square) before being reminded again that the task was to click “the
point on the figure where it would be perfectly balanced.” Each
shape was then displayed one at a time on its own page in a
randomized order between subjects. There was no time limit on
responses.

Results and Discussion

Center-of-mass judgments for the experimental shapes were
systematically biased (see Figure 2). Individual subjects were
prone to error not only individually (deviating from the true center
of mass by an average of 60 pixels, or 16% of the maximum error
that would be possible even in principle given the constraints of
the task) but also as a group: As plotted in Figure 2, the average
location of subjects’ center-of-mass estimates for a given shape
itself deviated from that shape’s true center of mass (i.e., the mean
of the coordinates of the shape’s interior points2) by an average of
43 pixels across shapes, reaching as high as 88 pixels (or 26% of
the maximum possible error) for one shape. In other words, the
“crowd” itself was unwise (cf. Galton, 1907), such that subjects’

estimates were individually and collectively often very far from
the true center of mass. (By contrast, performance on the catch
shapes was accurate: Across the three shapes, the average location
of subjects’ estimates deviated by only 7 pixels from the true
center of mass, which suggested that subjects understood the task
as intended.)

Inflationary intrusion. Closer inspection of the plotted
center-of-mass estimates revealed a seemingly consistent pattern
in subjects’ errors: The estimates seem to “underweight” the
contribution of long, narrow shape-parts to the overall center of
mass and correspondingly “overweight” the contribution of wide,
stout shape-parts. For example, estimates for the first shape de-
picted in Figure 2 (top row, leftmost column) illustrate this pattern:
The average estimate (represented by the blue circle) is farther
from the narrower parts (and closer to the wider parts) than is the
true center of mass (represented by the green star). Such biased
weighting may not be entirely irrational: Indeed, for many real-
world objects—such as trees, pears, or bottles—the parts of the
object that appear wider in 2D cross-section (e.g., the tree’s trunk)
are also in fact thicker in three dimensions relative to the parts of
the object that appear narrower in two dimensions (e.g., the tree’s
branches), which are often thinner in three dimensions. Perhaps,
then, subjects’ estimates reflected an implicit assumption that
wider shape-parts are actually thicker (and therefore heavier) and
that narrower shape-parts are actually thinner (and therefore
lighter), although such depth information was not explicitly pres-
ent in the image (cf. Cole et al., 2009; Koenderink, van Doorn, &
Kappers 1992).3

Conveniently, “inflationary” approaches to shape processing in
the computer vision literature have recently formalized exactly this
assumption. We naturally perceive shapes as having parts (Hoff-
man & Singh, 1997); thus, a longstanding challenge for theories of
image processing has been to characterize how the visual system
determines this part structure (including, e.g., how many parts
there are, where one part ends and another begins, and so on).
Traditional techniques for such 2D shape segmentation typically
establish part boundaries along minima of concave curvature, but
such approaches are frequently misled by common cases, such as
shapes with undulating bounding contours or even a human hand
(see Twarog et al., 2012). In more recent inflationary approaches,
2D images of shapes are segmented by first deriving 3D versions
of them and then applying more successful 3D segmentation rules
before projecting those part boundaries back onto the 2D shape.
For example, one prominent and elegant approach known as puff-

1 Given the exploratory nature of this study and the ease of online data
collection, we chose this sample size simply because it seemed very large
for a visual perception study of this sort. (For example, it was 10 times as
large as that of the one previous study we know of using a similar task;
Baud-Bovy & Soechting, 2001).

2 Although 2D shapes do not literally have mass (and so, in a sense, had
no “true center of mass” in this study), it is standard in this literature to
refer to 2D shapes in this way (e.g., Baud-Bovy & Soechting, 2001; Cohen
& Singh, 2006; Samuel & Kerzel, 2011). Throughout this paper, any
instance of “true center of mass” could be read as “mean of the coordinates
of the shape’s interior points.”

3 Although subjects did not explicitly report making this nonuniform-
thickness assumption in debriefing when asked to describe their estimation
strategy. (If anything, many subjects reported assuming uniform thickness,
describing their strategy as imagining “a piece of cardboard” or “a piece of
paper cut into that shape.”)
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Figure 2 (opposite).
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ball (Twarog et al., 2012) inflates 2D shapes by placing spheres of
radius r anywhere inside of the 2D shape that a circle of radius r
can be placed, and then taking the union of the spheres. (More
pithily: “wherever you can place a circle, place a sphere.”) The
resulting balloon-like objects (for an example, see Figure 3) can
then be segmented into parts more easily (e.g., by using points of
minimal principal curvature).

Crucially for explaining the presently discovered biases, (a)
such inflation incidentally implements the principle that wider
shape-parts are thicker and narrower shape-parts are thinner be-
cause the thickest regions of the inflated 3D shape (i.e., the points
at the centers of the largest spheres) are necessarily the widest
regions of the original 2D shape (i.e., the points that are the centers
of the largest circles) and (b) this inflation process is based on
principles of visual processing that are already known to be im-
plemented by the mind (rather than appearing only in empirically
unmotivated computer vision models), such as the deployment of
medial-axis representations of shapes (Firestone & Scholl, 2014;
Kovács, Fehér, & Julesz, 1998; Kovacs & Julesz, 1994; Wilder,
Feldman, & Singh, 2011).

Thus, as an initial test of whether biases in center-of-mass
estimation could be explained by intrusion of inflated 3D repre-
sentations onto judgments of the 2D center of mass, we created
inflated versions of our shape stimuli (using, without modification
or parameter fitting, the original code and parameters from Twarog
et al., 2012) and projected the centers of mass of the resulting
inflated objects back onto our 2D shapes. This simple “model”
(i.e., assuming that subjects were attempting to report the inflated
3D shape’s center of mass rather than the actual 2D shape’s
centroid) captured deviations in aggregate shape-wise center-of-
mass estimates surprisingly well, r(28) � .83, p � .001, correctly
predicting the direction of estimate displacement (along the x and
y dimensions) in 54 of 60 cases (see Figure 4). It is interesting to
note that despite this strong correlation, the inflation-based model
also robustly “predicted” stronger biases than we in fact observed
because the inflationary center of mass was, on average, 31%
farther from the 2D center of mass than were subjects’ actual

estimates, t(29) � 3.23, p � .01, d � .59 (see the shaded-in
discrepancy between the regression line and y � x in Figure 4).
This suggests that subjects were not reporting the 3D center of
mass instead of the 2D center of mass, but rather that their
estimates are biased by the 3D center of mass (for effects broken
down by subject, see Figure S1 in the online supplementary
material). It is this phenomenon that we call “inflationary intru-
sion”: The mental construction of 3D representations of shapes in
the natural course of visual shape segmentation and the subsequent
effects of this process on the perception of 2D shape geometry.

Other data and theories. Whereas previous work has touched
on issues conceptually related to center-of-mass perception, in-
cluding visual localization (e.g., Cohen & Singh, 2006; Davi,
Thomas Doyle, & Proffitt, 1992; Denisova et al., 2006; Vishwa-
nath & Kowler, 2003), judgments of stability (e.g., Battaglia,
Hamrick, & Tenenbaum, 2013; Cholewiak, Fleming, & Singh,
2013, 2015; Samuel & Kerzel, 2011; see also Bonawitz, van
Schijndel, Friel, & Schulz, 2012), and actual grasping of objects
(e.g., Bingham & Muchisky, 1993; Goodale et al., 1994; Iberall et
al., 1986; Lederman & Wing, 2003; Lukos, Ansuini, & Santello,
2007), we know of only one previous study focusing on free,
explicit center-of-mass estimation (Baud-Bovy & Soechting,
2001). That study found errors in center-of-mass perception for
much simpler shapes (e.g., irregular triangles and quadrilaterals)
but attributed such errors to an “incenter bias,” according to which
an object’s perceived center of mass would be determined by the
center of the largest circle that can fit inside of the shape. How-
ever, we suggest here that such an apparent incenter bias was
actually a special case of a broader inflationary principle of shape
processing: If center-of-mass perception is biased toward the in-
flated shape’s center of mass, then it will also inevitably tend
toward the incenter, if only because the center of the largest circle
that can fit inside of the shape will also happen to be the thickest
region of the inflated shape (e.g., using puffball’s “wherever you
can place a circle, place a sphere” rule, which will always place the
largest sphere at the incenter).

However, it is important to note that our results suggest that
center-of-mass estimates become increasingly decoupled from the
incenter for more complex shapes (for an example, see Figure 5).
When we directly compared a bias toward the inflated center of
mass against a bias toward the incenter, the “inflationary intrusion”
hypothesis better tracked subjects’ estimates. For example, com-
pared with an incenter bias, a bias toward the centers of mass of the
shapes’ inflated forms was closer to subjects’ actual center-of-
mass estimates (25 pixels vs. 47 pixels, t(29) � 4.24, p � .001,
d � .78), accounted for more variance in center-of-mass estima-
tion errors (70% vs. 59%; z � 2.12, p � .05), and nonparametri-
cally outperformed an incenter model, giving predictions that were
closer to subjects’ actual estimates in 87% of cases (26 of 30,
binomial probability test, p � .001). In this way, the new data

Figure 2 (opposite). Results from the center-of-mass estimation task. Green star indicates true center of mass (i.e., the mean of the coordinates of the
shape’s interior points), blue circle indicates average location of all subjects’ estimates, and red arrow indicates direction and magnitude of displacement
from true center of mass predicted by inflation (the inflated center of mass is located at the arrowhead’s tip). The blue circle on each shape is at least 3
times as large as the standard error for the location it represents (i.e., subjects’ estimated center of mass). Shapes are sorted from top left to bottom right
in order of estimation error relative to inflationary center of mass. CoM � center of mass. See the online article for the color version of this figure.

Figure 3. Example of Puffball inflation for a 2D shape used in the present
studies. See the online article for the color version of this figure.
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reported here with more complex shapes cannot easily be recon-
ciled with an incenter bias, whereas the inflationary intrusion
account has a ready explanation of previous data that had initially
seemed suggestive of an incenter bias.

Ruling out such an incenter bias also helps to rule out other
potential interpretations of these results. For example, at least at
first glance, an alternative explanation of these biases could be that
subjects simply avoided the edges of the images they were asked
to click so as to “play it safe” and not accidentally click outside of
the shape (and thus fail the task). However, that strategy would
lead to exactly the sort of incenter bias that the present data rule
out, because the incenter is, by definition, the single “safest” point
on the shape to click (being the point with the greatest distance to
the nearest edge). Moreover, the strategic avoidance of edges
would seem to make odd or even absurd predictions in several
cases. For example, the safest place to click the dumbbell shape
that served as one of the catch shapes (Figure 2, leftmost catch
shape) is the center of one of its lateral “bells” (which is also the
location of its incenter), and the “least safe” place to click is the
narrow strait at the shape’s center. However, that narrow strait is
precisely where subjects clicked: The blue circle in that figure not
only represents the mean estimate for the dumbbell shape, but it
also overlaps with the click locations of 98% of subjects, who
apparently did not hesitate to click a location very near the edge
(and far away from the incenter).

Thus, a bias toward the incenter provides an inferior fit to the
observed data and makes easily falsified predictions for particular
cases. These considerations effectively undermine this alternative
account and instead support the inflation account of biased center-
of-mass perception.

Study 2: Shapes Versus Nonshapes in
Center-of-Mass Perception

We are proposing that visually locating an object’s center of
mass is biased by an implicit 3D representation of 2D shapes. As
such, our account is specific to objects and shapes per se; thus, it
predicts not only the presence of such biases in shape perception
(as in Study 1) but also their relative absence for stimuli that are
not shapes.

Study 2 tested this strong prediction by running the same task as
in Study 1 but with nonshapes substituted as stimuli. In particular,
we took the original shapes from Study 1 and derived from them
arrays of dots whose boundaries matched those of the original
shapes but which had no explicit bounding contour (Figure 6, a and
b). The center of mass of a 2D shape is identical to the centroid of
each of its pixels, so in principle the visual system should be just
as good (or bad) at estimating the centroid of a shape as the
centroid of an array of dots arranged in that shape. However, we
reasoned that if inflation-based shape segmentation is truly a
source of the estimation errors observed in Study 1, then such
biases should be reduced for centroid estimates of such dot arrays,
which share many geometric properties with the shapes in Study 1
but are not literally shapes in the first place, and so may not be
inflated by the visual system. Of course, transforming outlined
shapes into dot arrays does not completely eliminate shapehood
because even arrays of dots can be visually segmented (Cohen,
Singh, & Maloney, 2008). For this reason we still expected to
observe systematic biases consistent with inflation, but we pre-
dicted that the average location of each subject’s estimate would

Figure 4. Correlation between estimates’ observed deviation from the
center of mass and the deviation “predicted” by inflation. Circles represent
deviation in the x dimension; triangles represent deviation in the y dimen-
sion. Solid black line is the regression line for all points, and dashed gray
line represents a hypothetical 1-to-1 relationship between inflation and
center-of-mass estimation. CoM � center of mass.

Figure 5. Example comparison of an inflationary bias and an incenter
bias. For complex shapes, a bias away from the true center of mass (green
star) and toward the inflationary center of mass (solid red arrow) better
captures subjects’ estimates (blue circle) than does a bias toward the incenter
(dashed yellow arrow). For the incenters of every shape used in the experi-
ment, see Figure S2 in the online supplemental material. CoM � center of
mass. See the online article for the color version of this figure.
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be more accurate (i.e., closer to the true centroid) for the dot arrays
than for the shapes from which they were derived.

Method

The method was identical to Study 1 except as follows. Two
hundred new subjects from Amazon Mechanical-Turk completed
the center-clicking task from Study 1, except now subjects were
randomly assigned to see either the exact same shapes as in Study
1 (the Shapes condition) or instead to see arrays of dots derived
from those shapes (the Dots condition). The dot arrays were
created by superimposing a grid of uniformly spaced dots (10
pixels in diameter, with 48 pixels of interdot spacing) on the
original shapes; all of those dots falling on the surface of the
original shape formed the dot array used as the stimulus. As
before, both groups were instructed to click the centroid of the
shapes or dots, or “the point on the figure where it would be
perfectly balanced.”

Results and Discussion

Replicating inflationary intrusion. For the Shapes condition,
center-of-mass judgments showed precisely the same pattern of
errors as in Study 1 (and indeed, the location of the subjects’
collective estimates themselves differed by a shape-wise average
of only 4.7 pixels between experiments; for a comparison of
estimates across experiments, see Figure S2 in the online supple-
mentary material). A bias toward the 2D shapes’ inflated centers of
mass was again highly correlated with the observed biases, r(28) �
.83, p � .001, and correctly predicted the direction of estimate
displacement (along the x and y dimensions) in 53 of 60 cases.
Thus, we replicated the inflationary intrusion pattern observed in
Study 1.

Dots versus Shapes. Aggregated center-of-mass estimates
were more accurate in the Dots condition than in the Shapes
condition. The average proximity (across the 30 matched pairs of
stimuli) of the location of the average estimate (across 100 sub-
jects) improved by 16%, t(29) � 3.05, p � .006, d � .55 (see
Figure 7). Thus, subjects were better at finding the centroids of dot
arrays than the centers of mass of their equivalent shapes, even
though such tasks could be considered computationally identical in
principle (because the center of mass of a 2D shape just is the

centroid of its pixels). This suggests, just as our account predicts,
that representation of an image as a shape drives biased center-
of-mass perception.

One potential concern is that the shapes-to-dots transformation
inevitably made the resultant images smaller than the original
images, and that this could seem to “improve” centroid estimates
simply by allowing less room for error. However, there was no
correlation between the amount a given shape “shrank” upon being
transformed into a dot array and the improvement in centroid
estimates for that shape, r(28) � .07, p � .7, suggesting that this
simple and small change in size cannot account for the robust
improvement in centroid estimates.

Thus, these results support the inflation-based account of biased
center-of-mass perception, and they continue to rule out alternative
interpretations. For example, if the errors in center-of-mass esti-
mation in these tasks were simply the result of strategic mouse-
clicking (e.g., avoiding the shapes’ edges so as not to accidentally
click outside of the shape), then there is no reason that altering the

Figure 7. Results from Studies 2 and 3. Center-of-mass estimates were
worse for contoured 2D shapes (gray bars) than they were for arrays of dots
(Study 2) or real-life uniformly thick blocks of wood (Study 3). Error bars
are �1 SEM. See the online article for the color version of this figure.

Figure 6. Sample stimuli for Studies 1–3. (a) A 2D shape from Study 1. (b) An array of dots derived from the
original 2D shape, as used in Study 2. (c) Photograph of a real-life, uniformly thick object laser-cut out of wood
using the original 2D shape as a blueprint (as used in Study 3). See the online article for the color version of this
figure.
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images’ shapehood should have any impact on subjects’ estimates.
That such a manipulation did alter—and in fact improved—such
estimates suggests that shape representation per se plays a key role
in the genesis of these effects.

Study 3: Real-Life 3D Objects

We have suggested that, in processing 2D shapes, the mind
constructs 3D representations of such shapes, and so it is natural
that the foregoing experiments have used 2D images as stimuli.
However, one context in which the visual system may be less
likely to rely on such 3D representations (and perhaps less likely
to be misled by such representations) is when the stimulus already
contains explicit information about the shape’s depth in various
regions—for example, when the stimulus is a real-life 3D object
whose thickness can be directly appreciated. Indeed, the original
impetus for inflationary approaches to shape segmentation is that
segmentation of volumetric 3D objects is more reliable than seg-
mentation of 2D silhouettes. By this logic, it may be less necessary
for the visual system to infer the inflated 3D form of a shape when
the shape’s actual 3D structure is readily accessible.

Thus, Study 3 used such real-life 3D objects as stimuli. We
compared center-of-mass judgments for the shapes used in Study
1 against center-of-mass judgments for real-life, uniformly thick
versions of those shapes (custom-cut out of wood using a com-
mercial laser). We reasoned that if inferences to an inflated,
nonuniformly thick, 3D form of the original 2D shapes contributes
to errors in center-of-mass perception, then directly confronting
subjects with the shape’s true 3D structure should reduce such
biases and result in more accurate center-of-mass estimates.

Method

Subjects. Twenty Yale University students participated in ex-
change for course credit.

Stimuli. We used a 150-W Universal Laser Systems ILS
12.150D laser cutter to construct, out of birch plywood, uniformly
thick (1.3 cm) objects, the shapes of which matched those from
Study 1. The objects were sanded and finished with a moisture-
resistant polyurethane coating.

Procedure. Each subject completed two tasks (with the order
of the tasks counterbalanced between subjects). In the Screen task,
subjects completed the same estimation task as in Study 1 for a
subset of 15 of the 30 experimental shapes (sampled randomly and
independently for each subject). In the Wood task, the experi-
menter placed in front of the subject one of the wooden objects and
asked the subject to estimate its center of mass—by sight only,
never physically handling the object—and then to gently place his
or her left index finger on the surface of the object to mark the
estimate’s location. Then, on a screen in front of the subject, the
2D shape image from Study 1 matching the wooden object’s shape
appeared, and subjects used their right hand to click the point on
the on-screen shape corresponding to the point on the wooden
shape where their left index finger was currently located. Subjects
were encouraged to stick with their original estimate and not to
change their mind during the “transfer” of their estimate from the
wooden object to the on-screen shape. This task was repeated for
whichever 15 shapes were not selected for the Screen task. Thus,
subjects completed an identical task at the time their responses

were recorded, with the only difference between conditions being
whether the subjects first saw a uniformly thick, real-life version of
the shape.

Results and Discussion

Collapsing across both task orders (Wood-Screen and Screen-
Wood), subjects’ responses trended in favor of more accurate
estimates for the wooden objects over the on-screen shapes, the
latter of which were 9% farther from the true center of mass than
the former, (t(29) � 1.15, ns). However, we suspected (and several
subjects themselves suggested in debriefing) that task order played
a role in performance, such that, for example, initially seeing a set
of shapes in wood would subsequently alter subjects’ understand-
ing of the on-screen shapes (e.g., by leading them to assume that
the on-screen shapes were also uniformly thick and to conse-
quently correct for this). Indeed, considering only the first task
completed by each subject (i.e., Wood for half of the subjects and
Screen for the other half), in which no such contamination could
have occurred, there was a reliable improvement in center-of-mass
estimates for the wooden shapes over the on-screen shapes, with
estimates for on-screen shapes falling 25% farther from the true
center of mass than for wooden shapes, t(29) � 2.64, p � .01, d �
.48 (see Figure 7)4. (This effect was robust to a conservative
Bonferroni correction [at � � .025] for multiple comparisons.)
Moreover, the improvement in center-of-mass estimation appeared
to benefit from a reduction in the inflation bias in particular:
Whereas estimates for the on-screen shapes were closer to the
inflationary center of mass than the true center of mass (30 pixels
away vs. 43 pixels away, t(29) � 2.32, p � .03, d � 0.42),
estimates for the wooden shapes were not (34 pixels vs. 34 pixels,
t(29) � 0.14, ns), and the interaction—which captures the ten-
dency of estimates to move away from the inflationary center of
mass and toward the true center of mass—was also reliable,
t(29) � 2.14, p � .05, d � .39. Thus, seeing uniformly thick 3D
versions of the shapes improved estimations of their center-of-
mass compared with seeing their 2D outlines, and in the way
expected if 2D center-of-mass estimation is biased by an assump-
tion of nonuniform thickness.

General Discussion

In a brief glance at an object or shape, we can appreciate not
only its size, color, and location but also a rich suite of functional
properties, including the organization of its parts (DeWinter &
Wagemans, 2006; Hoffman & Richards, 1984); its underlying
body plan (Feldman & Singh, 2006; Firestone & Scholl, 2014;
Treder, 2010); its graspability (Lukos et al., 2007); and, appar-
ently, its center of mass. However, both in the real world and in
the laboratory, our perception of balance shows puzzling system-
atic biases. In three studies, we found the first psychophysical
evidence that the computer-graphics technique of shape inflation

4 The second-task data for each subject also allowed us to rule out
independent group-level effects. For example, the two groups of subjects
had nearly identical performance in the Wood task, averaging 34 pixels
(Wood-first group) and 33 pixels (Screen-first group) from the true centers of
mass of the wooden shapes, t(29) � 0.28, p � .75, suggesting that it was not
simply that one group was better at the task than the other.
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may be implemented in the mind, showing that inflation leads
center-of-mass perception astray by implicitly assuming that out-
lined shapes are nonuniformly thick. We found that center-of-mass
judgments for 2D shapes are biased in a way uniquely predicted by
inflation of those shapes (e.g., as opposed to an incenter bias or
strategic estimation), and that such biases are reduced by attenu-
ating and by enhancing the available shape information in the
stimuli: Reducing shapehood by converting contoured 2D shapes
into arrays of dots improved subjects’ ability to perceive their
centers of mass, as did explicitly displaying a uniformly thick third
dimension (by using real-life blocks of wood). Together, these
results suggest that shape inflation is psychologically real and that
it intrudes on visual representation of the objects we see.

From Machines to Minds

Although promising in principle as an approach to shape seg-
mentation, the notion of shape inflation has so far been confined to
computer vision models and graphics applications (e.g., transfer-
ring textures from one shape to another; Twarog et al., 2012).
However, its success in various applied contexts raises the intrigu-
ing possibility that this technique is actually implemented in the
mind. The results presented here suggest that the visual system
does in fact use an inflationary process in representing shapes.
Thus, these results provide a case study of how theoretical insights
about how perception could work in principle can generate testable
hypotheses for how perception does in fact work in the mind.

A “Feature,” Not a “Bug”

The principles underlying visual perception are often described
as a necessarily imperfect “bag of tricks” (Ramachandran & An-
stis, 1986) that can be easily “misled” (as in all visual illusions),
but it is noteworthy that a certain finesse is often required to
produce illusory visual phenomena. (For example, consider how
many visual illusions require accidental views of carefully ar-
ranged stimuli, false or unusual lighting conditions, unnatural
computer-graphics displays, etc.). By contrast, the biases reported
in the present studies are generated with striking ease: There is
nothing particularly unusual about the stimuli used in the present
experiments, which are simply shapes with salient part structures,
and yet they bias our perception of balance in surprisingly large
and systematic ways. The ease with which such judgments are led
astray in the present cases suggests a deeper, underlying reason for
such biases—the possibility that these biases reflect an adaptive
“feature,” rather than a flawed “bug.” That is precisely the account
we have proposed and tested here: That biased perception of
balance in such cases reflects a more general functional charac-
teristic of object processing that serves us well in navigating and
manipulating a 3D world.
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Correction to Foroughi et al. (2015)

In the article “Interruptions Disrupt Reading Comprehension,” by Cyrus K. Foroughi, Nicole E.
Werner, Daniela Barragán, and Deborah A. Boehm-Davis (Journal of Experimental Psychology:
General, 2015, Vol. 144, No. 3, pp. 704–709. http://dx.doi.org/10.1037/xge0000074), the effect
sizes (Cohen’s d) reported used the following formula:

d � t
�n

The authors later found out that this formula should not be used to calculate Cohen’s d for a paired
sample (Cortina, personal communication). Therefore, they present the correct effect sizes using the
traditional formula for Cohen’s d (see Dunlap, Cortina, Vaslow, & Burke, 1996 for a review):

d �
M2 � M1

SDpooled

The correct effect sizes are:

Experiment 1: d � .85; Experiment 2: d � .95; Experiment 3: d � .70, d � .73
Notably, the effect sizes are still considered “large” (or near large) by conventional standards

(Cohen, 1998), and this error has no bearing on the implications of the research.
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